The Elements of Energy Conversion and Plant Growth

The Elements of Energy Conversion and Plant Growth

I wrote this newsletter back in late October 2019. It came up this week from one of our suppliers as he had just purchased my book. Thank you, Travis, my friend, as it’s worth repeating.

All plants require 17 elements to complete their life cycle. Carbon, hydrogen and oxygen are obtained from the air and water. Plants derive the remaining 14 elements from the soil, which is often enriched with fertilizers and amendments. Plant growth and development largely depend on the combination and concentration of available mineral nutrients.

Wherefore Art Thou Carbon?

Wherefore Art Thou Carbon?

There is lots of talk these days about carbon and how to manage it, especially when it comes to carbon in our atmosphere. Over the centuries, humans have expanded their carbon emissions as societies have advanced, resulting in more carbon in the atmosphere which leads to climate change.

Supporting Plant Adaptation

Supporting Plant Adaptation

It’s important to think about plants as being incredibly adroit at adapting to changing conditions and consider how we can best support them as they try to function efficiently.

Helping Plants Sequester Carbon

Helping Plants Sequester Carbon

The definition of regenerative agricultural practices is evolving. In the beginning, my definition was simple: engage in agricultural practices that work to maximize carbon sequestration in your soils and do it in a manner that minimizes your carbon footprint. Recently, I read a definition of regenerative agriculture as a “toolkit of principles/practices to restore and preserve biodiversity and soil health by creating a functional ecosystem that reduces external inputs while producing nourishing farm products.” This definition begins to consider how carbon is cycling through the system, emphasizing supporting microbial activity and nutrient cycling. All good in my thinking, but how do we get there?

Honey, I Charged the Bees!

Honey, I Charged the Bees!

Bees and flowering plants have a long-standing and remarkable co-evolutionary history. Flowers and bees evolved traits that enable pollination, a process that is as important to plants as it is for pollinating insects. Bee–flower interactions rely on senses such as vision, olfaction, humidity sensing, and touch. Recently, another sensory channel has been added to the list, with the detection of a weak electrostatic field that arises between a flower and a bee.